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A B S T R A C T

We present remedies to two fundamental difficulties facing the applicability of the traditional
FFT-based beam propagation method (FFT-BPM) when investigating the propagation and
transmission of transverse magnetic (TM) optical beams in subwavelength step-index wave-
guiding structures. To the best of our knowledge, the FFT-BPM is introduced for the first time to
assess the plasmonic-dielectric waveguide interconnects. At the junction plane, we modified the
FFT-BPM algorithm by including a combined spatial-spectral reflection operator formalism to
calculate the reflected field. As a test, we calculated the optical power transmission efficiency
between plasmonic and dielectric waveguide interconnect. A comparison between our results,
and those obtained by full-modal matching using finite-difference frequency-domain (FDFD),
reveals good agreement. Such interconnecting structure is crucial in many applications as bio-
sensors, optical near-field probes, and interfacing elements involving high-contrast refractive
index materials. We believe that rehabilitating the classical FFT-BPM to handle nanoscale wa-
veguiding structures, which include metal-dielectric interfaces, will be of prime importance in
the development, analysis and assessment of nano-photonics devices.

1. Introduction

The increasing demand for fast information transport and processing is undeniable. This has driven enormous progress in the
silicon electronics technology. The last few decades have witnessed a huge progression towards faster, smaller and more efficient
electronic devices. The scaling of these sophisticated devices has brought about many challenges. Perhaps, the most daunting pro-
blems preventing significant increase in processor speed are thermal and signal propagation delay issues associated with electronic
interconnections. On the other hand, optical interconnects, have an extremely large data, carrying capacity, that may offer new
promising solutions to circumvent these problems. Optical alternatives are particularly attractive for next generation chips in which a
multitude of fast electronic processors need to be connected by high-speed interconnectors. Unfortunately, the large size mismatch
between electronic and dielectric photonic devices hampers the implementation of such processors. As the dielectric photonic devices
are diffraction-limited in size to about half the light wavelength, so that they are at least one or two orders of magnitude larger than
their nanoscale electronic counterparts. This size mismatch presents a major challenge when interfacing these technologies. For
further progress, it is required a substantially new chip-scale device technology [1] that can facilitate information transmission
between nano-scale devices at optical frequencies and hence bridge the gap between micro-scale photonics and nano-scale
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electronics.
Fortunately, surface plasmon-based interconnect structures can merge electronics and photonics at nanoscale [2], and thus offer a

reliable solution to that size-compatibility problem. The most remarkable feature of subwavelength metallic waveguiding structures
is their high degree of concentration of electromagnetic fields achievable in the vicinity of metal surfaces. This degree of con-
centration, which is well beyond the diffraction limit, arises from coupling the energy and momentum of a photon to a free-electron
gas in the metal. The subwavelength coupled oscillations, known as surface plasmons (SPs), both enable efficient light manipulation
at the nanoscale in plasmonic structures. Few years ago [3], an insulator-metal-insulator (IMI) plasmonic interconnect using TiN has
been proposed and investigated experimentally at wavelength 1.55 μm. This enables the developers and chip designers to implement
minute electronic circuits that can move data very fast across the chip. In this respect, plasmonic devices could be considered as one
of the most promising candidates able to overcome the size mismatch between microscale photonic devices and nanoscale electronics
[4–7]. It is worthy to note that, due to remarkable field confinement near the interface and around sharp corners [8], surface
plasmons are very well suited for bio-sensors [9], near field imaging [10–12] and storage devices [13]. Also, the distinct enhance-
ment of light emission when InGaN/GaN quantum wells are coated by nanometer silver films, renders the surface plasmons an
exceptional promoter for the internal quantum efficiency in optical sources [14].

The theoretical analysis and assessment of such subwavelength metallic waveguiding structures represent a heavy computational
load that should be handled efficiently. The finite difference time domain (FDTD) and the finite difference frequency domain (FDFD)
are the most widely used numerical methods for plasmonic simulation and analysis [15]. Surprisingly, to the best of our knowledge,
the FFT-based beam propagation method (FFT-BPM) has not been used, so far, to study and investigate the propagation and coupling
of optical beams in sub-wavelength plasmonic-dielectric waveguides interconnects.

Declining the use of FFT-BPM in such problems, motivated us to reconsider the major difficulties associated with TM fields [16] in
the framework of the BPM. Two major reasons behind this declination are: firstly, the mixing of field derivative and refractive index
derivative in the wave equation; secondly, the step-like discontinuity in the refractive index profile of both: dielectric and plasmonic
waveguide as well [17]. In this paper, we present two possible remedies for these difficulties. It is worthy to note that these remedies
are not merely a way to improve the accuracy, but rather they are indispensable to adapt the traditional FFT-BPM to handle TM fields.
This allows getting full benefit of the simplicity and powerfulness of the FFT-based BPM. Obviously, on one hand, the presence of
mixed derivatives of the field and the refractive index profile in the wave equation of the TM field prevents the direct use of FFT in the
BPM algorithm for such type of fields. On the other hand, the equivalent index required to transform the TM problem to an equivalent
TE, involves transverse second derivative of the discontinuous step-index at the interface metal-dielectric forming the boundaries of
the plasmonic waveguide. That is, a Dirac-delta singularity will occur in the derivative unless a suitable smoothing approximation to
the step-index profile is applied.

It is worthy to note that, spectral domain methods (like FFT-BPM) are more superior than spatial domain-based methods (Finite
difference (FD) and Finite element (FE)) especially when considering subwavelength structures [18]. This is why most of the FD-
based methods are performed in the spectral domain (FDFD) when considering nanoscale structures [19,20]. Though, FD schemes are
usually stable numerically, they may not conserve power even when used in conjunction with vectorial beam propagation methods
[21]. To make our exposition clear, we shall consider two-dimensional waveguiding structures with the optical power confined in one
dimension.

2. Reconsideration of TM fields difficulties

Fig. 1, depicts a one-dimensional (y-invariant) metal-insulator-metal (MIM) plasmonic waveguide. The modes of such guide are
TM in nature with the magnetic field Hy and the electric fields Ex and Ez derivable from the magnetic field Hy [22]. The refractive
index of the metal nm is complex:

= −n n jnm mr mi (1)

where, nmr and nmi are the real and imaginary parts respectively. Assuming a monochromatic time-harmonic dependence of the form
ejωt (j being the imaginary unit and ω is the angular frequency), the wave equation for Hy(x,z) takes the form [17]:

Fig. 1. Schematic diagram of a 2-dimmensional MIM plasmonic waveguide.

A. Shaaban, et al. Optik - International Journal for Light and Electron Optics xxx (xxxx) xxxx

2



⎡

⎣
⎢∇ + −

∂
∂

∂
∂

⎤

⎦
⎥ =k n x

n x
n x

x x
H x z( ) 1

( )
( )

( , ) 0p
p

p
y

2
0
2 2

2

2

(2)

where ko is the free space wavenumber, ∇ = ∂ ∂ + ∂ ∂x z( / / )2 2 2 2 2 and np(x) is the refractive index profile of the plasmonic waveguide
composed of a dielectric layer with refractive index nd surrounded by a metal with index nm. The dielectric could be lossy, but for the
moment, we shall assume it lossless. As stated earlier, the first problem facing the applicability of the FFT-based BPM in the solution
of Eq. (2) is the term involving the mixed derivatives of the field and the refractive index profile. Poladian et al. [17] suggested a
transformation of the TM problem to a TE one via the following transformation:

=H x z n x F x z( , ) ( ) ( , )y p (3)

direct substitution of Eq. (3) in Eq. (2) results in the following wave equation for F(x,z):
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this can be written as:
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(5)

It is easy to conclude that Eq. (5) is a TE problem with an equivalent index medium:
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The equivalent problem Eq. (5) is amenable -in principle- to be solved via the traditional FFT-based BPM algorithm. However, the
step-like index profile np(x) represents the second major problem that should be treated carefully. A judicious solution is to ap-
proximate np(x) by a “smooth” function in order to circumvent the singularity in the transverse derivative ∂ n x(1/ ( ))x

p2 in the
equivalent index Eq. (6).

Some authors [22,23] suggested to use a sigmoid smoothing function in the analysis of TM modes of planar lossless dielectric
waveguides. But, they pointed out that the choice of the smoothing parameter in the sigmoid function is very sensitive in concern
with power conservation, and can introduce spurious modes if its value is not well chosen [22]. Other authors [24] used an arc-
tangent function as a smoothing function, but sometimes, numerical artifacts may appear on the sharp boundaries of the guiding
structure if the steepness parameter is not chosen cautiously [22]. In this paper, we adopted the smooth transition autoregressive
(STAR) function [25] to approximate the refractive step-index profile np(x) of the MIM plasmonic guide. This function did not suffer
from the previously mentioned drawbacks, especially when calculating the second derivative of the inverse of the refractive index
profile numerically (c.f. Eq. 6). Accordingly, the STAR function assumes the following form:
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where, ‘a’, is a parameter (its unit is the inverse of x) which describes the steepness of the function npa. Fig. 2, depicts the smooth
profile npa for different values of ‘a’. The width of the guide is Wp=50 nm, the metal is silver having nm=0.397 - j11.4 at
λ=1.55 μm [19], and the dielectric core is air (nd=1). From the numerical perspective, we found that when ‘a’ lies in the range
5–40, npa(x) gives a satisfactory approximation to the original step-index profile np(x), as shown in Fig. 2.

3. The dielectric-plasmonic Butt-Coupler

Fig. 3 shows a dielectric waveguide with width Wd=300 nm, butt-coupled to a plasmonic MIM waveguide having a width Wp.
The width 300 nm of the dielectric guide corresponds to the minimum spot size of the fundamental TM0 mode at λo= 1.55 μm. While

Fig. 2. Smoothing function npa(x) for different values of the steepness parameter 'a'.
Obviously, Eq. (7) could be applied to step-index dielectric waveguides as well.
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the width of the plasmonic guide Wp is varied in the range 5–200 nm. Upon the incidence of the TM0 mode from the dielectric guide
on the interface plane z=0, backward reflected and forwarded transmitted fields are generated. The calculation of the reflected field
is carried out using a combined spatial-spectral formalism [26]. This enables us to express the reflected field Hr(x,z) at the junction
plane z=0 as follows:

�= ⋅ ⋅−H x Δr x h k ρ k( , 0) ( , 0) [ ( , 0) ( , 0)]r i x x
1 (8)

where hi(kx,0) is the angular spectrum representation, i.e. the transverse Fourier transform (with respect to x) of the incident field
Hi(x,0) at the junction plane (the fundamental guided mode TM0 of the dielectric waveguide). This plane wave spectrum takes the
form [27,28]:

∫=
−∞

∞
−h k H x e dx( , 0) ( , 0)i x i

jk xx

(9)

where, kx is the variable of the Fourier transform. The spectral part ρ(kx,0) of the reflection formalism in the inverse Fourier transform
ℑ −1 in Eq. (8), is the Fresnel reflection coefficient corresponding to the plane wave component hi(kx,0). It assumes the form [26]:
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where, +no and −no are certain reference refractive indices just immediately after and before the junction plane z= 0 as will be
explained later. +kz and −kz are the z-components of wave vectors of the angular spectrum of plane waves having transverse x-
components kx in the regions z> 0 and z<0 respectively. Namely, they are written as [26]:
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the spatial dependent part of the reflection r xΔ ( , 0) in Eq. (8) takes the form [26]:
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With xo being the coordinate at which r x| ( , 0)| is maximum. Further, the reference refractive indices in Eq. (10) are:
≡+ +n n x( , 00 0 ) and ≡− −n n x( , 00 0 ). Obviously, the refractive index distribution −n x( , 0 ) is the refractive index profile of the di-

electric waveguide and similarly n(x,0+) is that one of the plasmonic waveguide np(x). The reflection formalism in Eq. (8), has been
verified extensively in many situations involving strong reflections, like the laser facet reflectivity [26,36].

The transmitted field Ht(x,0) at z= 0, follows directly from the boundary condition:

= +H x H x H x( , 0) ( , 0) ( , 0)t i r (16)

This field will excite all the modes, discrete and continuous [19], of the MIM waveguide in z> 0. After few nanometers, the
fundamental TM0 dominates. As a preliminary test of the method, we considered the following parameters for the waveguides:
Wp= 43 nm, Wd=300 nm, nd= 3.477, nm= 0.397-j11.9856 at λo= 1.55 μm. These values correspond to optimal transmission
between the two guides (as will be seen later). Fig. 4 depicts the evolution of the magnitude of the magnetic field along the

Fig. 3. Butt-coupling between dielectric waveguide and MIM waveguide. The TM0 mode of the dielectric guide is incident on the z= 0 plane, where
the fundamental TM0 mode of the plasmonic guide is excited as well as the continuous spectrum.
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propagation direction (dielectric guide length=30 nm, and plasmonic guide length= 90 nm).
The color contour plot corresponding to Fig. 4 is shown in Fig. 5 which exhibits the main characteristics of the problem: the

radiation field generated at z= 0 spreads outside the boundaries of the plasmonic core Wp, and gradually fades out. Finally, the
fundamental TM0 mode of the plasmonic guide predominates.

Fig. 6 is a flow chart depicting the main structure of our computational framework.
It should be emphasized that +n0 and −n0 must not be confused with the index of the homogenous medium used in the BPM

algorithm. For z< 0, the reference homogeneous medium assumes the value =n β k/od d 0 where βd is the propagation constant of the
TM0 mode of the dielectric waveguide. Similarly, =n β kRe( / )op p 0 is the reference index of the homogenous medium used in the BPM
for z> 0, with βp being the complex propagation constant of the fundamental TM0 mode of the MIM guide. These propagation
constants are easily calculated numerically [29–30]. The guided transmitted power Pg, few nanometers after z= 0, can be readily
calculated as [17]:
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where, npa(x) is the smoothed approximate refractive index profile of the plasmonic guide, and ´ Re ' denotes the "real part of". The
distance zo at which the TM0 mode attains its stable state is estimated by calculating the integral in Eq. (17) at each propagation step
for z> 0 until:

+
=
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P z Δz

P z
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2
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] .g
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The criterion Eq. (18) follows directly from the decay rate of the power guided by the TM0 plasmonic mode [30]. Hence, the
power transmission efficiency η is readily calculated:

=η
P
P

g

i (19)

Fig. 4. The TM0 mode of the dielectric waveguide Ud starts propagation at z=-30 nm toward the MIM waveguide at z= 0. The transmitted field
excites strong radiation field Ur at the immediate vicinity of the junction plane. This field fad out, and ultimately, only the fundamental guided
plasmonic mode Up dominates.

Fig. 5. Contour plot of the total field propagated across the junction plane z=0. The radiation field excited at junction fades out with distance z and
ultimately the TM0 plasmonic mode predominates.

A. Shaaban, et al. Optik - International Journal for Light and Electron Optics xxx (xxxx) xxxx

5



where, Pi is the incident power at z= 0, namely, the power carried by the guided TM0 mode in the dielectric waveguide [31]:
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where, nd (x) is the refractive index profile of the dielectric waveguide.
Concerning the power stability in the dielectric-plasmonic waveguide coupler of Fig. 3, we checked the intensity Ii of the in-

homogeneous part of the total propagated field. The evanescent waves in the angular spectrum of the total propagated field constitute
this inhomogeneous field [32]. These waves may degrade the stability of the calculations if they are not well handled. The in-
homogeneous intensity Ii (representing the evanescent waves) is calculated from the z-component of the Poynting vector (using
Parseval's theorem) as follows [32]:
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However, a more stringent stability criterion for the evanescent waves is obtained by calculating the energy flux (rather than the
intensity) of the inhomogeneous part Φi as follows [32]:
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according to [32], stability is satisfied if:

<Φ z Φ( ) (0)i i (23)

Fig. 6. Flow chart of the implemented program used in the dielectric-plasmonic interconnect.

Fig. 7. The energy flux Φi of the inhomogeneous component of the total propagated field as function of z. The decay of the evanescent waves
constituting that field, reflects the satisfaction of the stability criterion Eq. (23).
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we calculated Φi as function of z on Fig. 7, which depicts the decrease of the energy flux of the evanescent waves along the pro-
pagation direction; hence, the stability of our proposed scheme is satisfied.

It is worthwhile to note that, many researchers have exploited the experimental importance of the plasmonic couplers. Recently
[33], it has been reported the experimental realization of a compact, efficient coupler between silicon waveguides and vertical metal-
insulator-silicon-metal (MISM) plasmonic waveguides using complementary metal-oxide-silicon technology processes, with copper
layers that support low-loss plasmonic modes. Also [34], fabricated an efficient coupler between a dielectric waveguide and a
plasmonic metal–insulator–metal (MIM) waveguide using electron-beam lithography and lift-off process. The authors of [35] ex-
perimentally demonstrated the nanoscale focusing of surface plasmons by constructing an integrated plasmonic/photonic on chip
nano-focusing device in silicon platform. The device was tested directly by measuring the optical intensity along it using a near-field
microscope.

4. Numerical results

A FORTRAN program has been implemented to calculate η using the following numerical values:
Number of sampling points along x-axis N=216, sampling interval along the x-axis Δx= 0.46 nm, propagation step-size Δz= 0.75

Δx, propagation distances in the dielectric and plasmonic guides= 20 and 130 nm respectively, hence total propagation dis-
tance=150 nm. The dielectric waveguide core thickness Wd=300 nm, MIM waveguide core thickness Wp varies from 5 to 200 nm,
Silicon refractive index ns=3.477, metal refractive index (silver) nm=0.397 - j11.4, and the free space wavelength λ0= 1.55 μm.
The value of the parameter 'a' in Eq. (7) is set to 20.

At z= 0, we included in the FORTRAN program, the formalism in Eq. (8) to calculate the reflected field, so, the transmitted field
Ht(x,0) follows directly from Eq. (16), and propagated by the BPM algorithm in the plasmonic guide. The transmitted power is
calculated at each propagation step until the criterion in Eq. (18) is satisfied; and hence η in Eq. (19) is readily obtained. Fig. 7
compares our results with those calculated by the finite difference frequency domain (FDFD) [20].

The maximum efficiency ηmax occurs atWp≅42 nm. Its value is 67.9 % in good agreement with 67.5 % of [20]. The decrease in the
transmission efficiency as Wp is increased beyond 42 nm is due to the light confinement characteristics of subwavelength MIM
waveguide: at long wavelengths (λ0= 1.55 μm), the field extends relatively in the metal away from the insulator region (air); which
means that the effective light-collection cross section is much higher than the geometrical dimension of the insulating layer. That is,
the field penetration distance in the metal, around the air core, is much larger than the core width (50 nm) as pointed out in [20].
This is illustrated in our calculations in Fig. 9, which shows the contour plot of the TM0 mode of the dielectric guide propagated from
z=-20 nm towards the MIM guide at z= 0. The guides have Wd=300 nm, and Wp=50 nm. As Wp is increased beyond 50 nm, the
effective light-collection area becomes larger than the geometrical dimension of the dielectric guide (Wd=300 nm), thus, the
transmission efficiency decreases as illustrated in Fig. 8.

Concerning the complexity and the computational cost of the FFT-BPM; and according to [36,37], with N samples in the
transversal direction x-axis and L steps in in the propagation direction z-axis, the required number of multiplications M and additions
A to compute an N-point FFT, N-point inverse FFT, are [36]:

M= (LN) log2 NL+ (2 LN) (24)

A=2 L N log2 N (25)

Conventionally, one complex multiplication needs four real multiplications and two real additions, whereas, one complex ad-
dition needs two real additions. Therefore, the number of required real operations takes the following forms [36]:

M= (4 L.N) log2 N+ (8 L.N) (26)

A=6 L.N log2 N + 4 L.N (27)

Fig. 8. The transmission efficiency calculated by the Bi-directional FFT-BPM (black continuous curve) and by the FDFD of reference [20]. As Wp

increases beyond the maximum point (Wp=40 nm), the light-collection cross sectional area of the MIM guide becomes larger than the core width of
the dielectric guide; which in turns, reduces the transmission efficiency.
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From the above equations, the time complexity of the FFT-BPM depends on quadratic-logarithmic, i.e. O(LN log2N). Therefore,
the complexity (C) for the BPM [38,39] can be expressed as: C=2N (4 N + 3), where C is the complexity of one propagation step
and N sampling points in the x-direction. However the complexity for L number of propagation steps in the z-direction is equal to (2 N
(4 N+3))L. Thus, the complexity of the FFT-BPM is simpler than the higher-order wide-angle split-step spectral technique [38]. As a
practical example, in the coupler problem addressed in sections III and IV, using the following values: N=65536, total propagation
distance Ztot = 200 nm, Δx=0.465 nm, Δz= 0.348 nm, total number of propagation steps= 574, on a computer with an Intel Core
i7- @ 2 GHz, and 16 GB Ram., the calculations are done in 205 s.

5. Conclusions

In this paper, we present remedies to the major difficulties facing the applicability of the FFT-based BPM when investigating TM
fields propagation in subwavelength optical interconnects. An equivalent index transforms the TM problem to a TE one, and the step-
like index profile of the plasmonic and dielectric guides are smoothed via a smooth transition autoregressive (STAR) function. This
enables full exploitation of the advantages associated with FFT-based BPM. A combined spatial-spectral formalism is included in the
FFT-BPM formalism to calculate accurately the reflected field at the junction plane between butt-coupled dielectric-plasmonic wa-
veguides. The coupling efficiency exhibits a peak at a certain plasmonic waveguide core width corresponding to matched spot size of
both waveguides. We claim that, the method presented in this paper can be extended to other types of very interesting problems, like
the evanescent coupling between MIM-dielectric and MIM-MIM waveguides. Such coupling could be very useful and efficient for
nanoscale wavelength optical interconnects, sensing, ultra-fast optical switching, and processing.
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